Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G.

نویسندگان

  • Chia-Li Wei
  • Yunn-Bor Yang
  • Wen-Ching Wang
  • Wen-Chi Liu
  • Jyh-Shing Hsu
  • Ying-Chieh Tsai
چکیده

The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A complete library of amino acid alterations at N304 in Streptomyces clavuligerus deacetoxycephalosporin C synthase elucidates the basis for enhanced penicillin analogue conversion.

N304 of Streptomyces clavuligerus deacetoxycephalosporin C synthase was mutagenized to alter its catalytic ability. Given that N304A, N304K, N304L, and N304R mutant enzymes exhibited significant improvements in penicillin analogue conversions, we advocate that replacement of N304 with residues with aliphatic or basic side chains is preferable for engineering of a hypercatalytic enzyme.

متن کامل

Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus.

A putatively rate-limiting synthase (expandase) of Streptomyces clavuligerus was stabilized in vitro and purified 46-fold from cell-free extracts; a major enriched protein with a Mr of 35,000 was further purified by electrophoretic elution. Based on a 22-residue amino-terminal sequence of the protein, the synthase gene of S. clavuligerus was cloned and expressed in Escherichia coli (Kovacevic, ...

متن کامل

Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion.

The deacetoxycephalosporin C synthase from Streptomyces clavuligerus was directly modified for enhancement of penicillin G expansion into phenylacetyl-7-aminodeacetoxycephalosporanic acid, an important intermediate in the industrial manufacture of cephalosporin antibiotics. Nine new mutants, mutants M73T, T91A, A106T, C155Y, Y184H, M188V, M188I, H244Q, and L277Q with 1.4- to 5.7-fold increases ...

متن کامل

Pii: S0378-1097(02)01136-9

The biosynthesis of cephalosporins involving a thiozolidine ring expansion is catalyzed by deacetoxycephalosporin C synthase (DAOCS). In this study, three DAOCS isozymes were cloned and expressed as active enzymes together with Streptomyces jumonjinensis DAOCS that was newly isolated and partially characterized. The enzymes showed excellent substrate conversion for penicillin G, phenethicillin,...

متن کامل

Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans.

The deacetoxycephalosporin C (DAOC) synthase (expandase) of Streptomyces lactamdurans was highly purified, as shown by SDS-PAGE and isoelectric focusing. The enzyme catalysed the oxidative ring expansion that converts penicillin N into DAOC. The enzyme was very unstable but could be partially stabilized in 25 mM-Tris/HCl, pH 9.0, in the presence of DTT (0.1 mM). The enzyme required 2-oxoglutara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 2003